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ABSTRACT Negeviruses are a group of insect-specific viruses (ISVs) that have been
found in many arthropods. Their presence in important vector species led us to
examine their interactions with arboviruses during coinfections. Wild-type negevi-
ruses reduced the replication of several alphaviruses during coinfections in mosquito
cells. Negev virus (NEGV) isolates were also used to express green fluorescent pro-
tein (GFP) and anti-chikungunya virus (CHIKV) antibody fragments during coinfec-
tions with CHIKV. NEGV expressing anti-CHIKV antibody fragments was able to fur-
ther reduce replication of CHIKV during coinfections, while reductions of CHIKV with
NEGV expressing GFP were similar to titers with wild-type NEGV alone. These results
are the first to show that negeviruses induce superinfection exclusion of arboviruses
and to demonstrate a novel approach to deliver antiviral antibody fragments with
paratransgenic ISVs. The ability to inhibit arbovirus replication and express exoge-
nous proteins in mosquito cells makes negeviruses a promising platform for control
of arthropod-borne pathogens.

IMPORTANCE Negeviruses are a group of insect-specific viruses (ISVs), viruses known
to infect only insects. They have been discovered over a wide geographical and spe-
cies range. Their ability to infect mosquito species that transmit dangerous arbovi-
ruses makes negeviruses a candidate for a pathogen control platform. Coinfections
of mosquito cells with a negevirus and an alphavirus demonstrated that negeviruses
can inhibit the replication of alphaviruses. Additionally, modifying Negev virus
(NEGV) to express a fragment of an anti-CHIKV antibody further reduced the replica-
tion of CHIKV in coinfected cells. This is the first evidence to demonstrate that nege-
viruses can inhibit the replication of important arboviruses in mosquito cells. The
ability of a modified NEGV to drive the expression of antiviral proteins also high-
lights a method for negeviruses to target specific pathogens and limit the incidence
of vector-borne diseases.

KEYWORDS Negev virus, alphavirus, insect-specific virus, negevirus, paratransgenesis,
superinfection exclusion

any insect-specific viruses (ISVs) have been discovered in wild-caught and labora-
tory colonies of mosquitoes and in mosquito cell cultures (1). ISVs are only known
to replicate in arthropods or insect cell lines. While posing no threat to human or ani-
mal health, I1SVs may affect the transmission of more dangerous vector-borne patho-
gens. Highly insect-pathogenic ISVs have been suggested for use as biological control
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agents to reduce populations of vector-competent mosquitoes (2-4). Several recent
studies have demonstrated that ISVs may play a more direct role by inhibiting the rep-
lication of arboviruses within the insect host. The majority of these experiments have
attempted to define a relationship based on superinfection exclusion, a phenomenon
in which an established virus infection interferes with a secondary infection by a
closely related virus. For example, insect-specific flaviviruses, such as cell fusing agent
virus (CFAV), Nhumirim virus (NHUV), and Palm Creek virus (PCV), have demonstrated
an ability to reduce viral loads of vertebrate pathogenic flaviviruses, like West Nile virus
(WNV), Zika virus (ZIKV), dengue virus (DENV), and Japanese (JEV) and St. Louis enceph-
alitis (SLEV) viruses (5-10). Similarly, the insect-specific alphavirus Eilat virus (EILV) was
shown to reduce or slow replication of the pathogenic alphaviruses chikungunya virus
(CHIKV), Sindbis virus (SINV), and eastern (EEEV), western (WEEV), and Venezuelan
equine encephalitis (VEEV) viruses in cell culture or in mosquitoes (11). Less informa-
tion is available about the effect of unrelated viruses during superinfection. Cell cul-
tures chronically infected with Aedes albopictus densovirus (AalDNV) limit replication
of DENV (12), cell cultures with established CFAV and Phasi Charoen-like virus (PCLV)
infections reduced ZIKV and DENV replication (13), and coinfections with Yichang virus,
a mesonivirus, reduced DENV replication in cells and dissemination in mosquitoes (14).
The mechanism for these reduced titers has not been elucidated, but the relationships
appear to be virus and even host specific (5, 15, 16).

The genus Negevirus is a recently discovered, unclassified group of ISVs (17).
Members of this genus have been isolated from several species of hematophagous
mosquitoes and sandflies, and negev-like viruses have also been found in other non-
vector insects (18-25). Phylogenetic studies have placed this group of viruses most
closely to members of the genus Cilevirus, plant pathogens that are transmitted by
mites (17, 24). These viruses have a single-stranded, positive-sense RNA genome of ~9
to 10 kb and contain three open reading frames (ORFs) (17). The ORFs encode the repli-
cation machinery (ORF1), a putative glycoprotein (ORF2), and a putative membrane
protein (ORF3). Electron microscopy has shown the structural proteins to be arranged
in a hot air balloon morphology, a round particle with a single protrusion that is likely
the glycoprotein structure (26-28). Little is known about the infectivity, transmission
dynamics, and species range of negeviruses. However, they are commonly found in
field-collected mosquitoes (29, 30).

The association of negeviruses with important vector species over a wide geo-
graphical range raises the question of possible interactions or interference of negevi-
ruses with vertebrate pathogenic viruses. Few studies exist that demonstrate the ability
of unrelated viruses to induce superinfection exclusion, but evidence for this phenom-
enon with negeviruses could provide a platform to control vector-borne viral diseases
in many arthropod vector species. In this study, three negevirus isolates from the
Americas were assessed for superinfection exclusion in cell cultures with VEEV, CHIKV
Mayaro virus (MAYV), o'nyong-nyong virus (ONNV), and Semliki Forest virus (SFV). The
use of a Negev virus (NEGV) infectious clone also allowed manipulation of the virus ge-
nome to provide a greater ability to exclude superinfection with CHIKV.

RESULTS

Wild-type negevirus growth curves. All wild-type negeviruses reached titers
greater than 10 log,, PFU/ml within 48 h when infected at a multiplicity of infection
(MOI) of 1 (Fig. TA). NEGV and Piura virus (PIUV)-Lutzomyia neared peak titer by 12h
postinfection (hpi), while PIUV-Culex neared peak titer at 24 hpi. Infections of NEGV
with MOIs of 1 and 5 produced similar growth curves (Fig. 1B).

Superinfection exclusion of alphaviruses with wild-type negeviruses. To deter-
mine the effect of negeviruses on the replication of alphaviruses in cell culture, negevi-
rus isolates were coinfected with VEEV-TC83 or CHIKV isolates. NEGV was able to signif-
icantly reduce replication of VEEV-TC83, with reductions of 5.5 to 7.0 log,, PFU/mI of
VEEV at 48 h (Fig. 2A). There were no significant differences in VEEV-TC83 titers when
coinfected with NEGV inoculated at MOIs of 1 or 5. There were also no significant
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FIG 1 Growth curve for wild-type negeviruses. (A) The titer of each virus, Negev virus (NEGV), Piura
virus-Culex (PIUV-Culex), and Piura virus-Lutzomyia (PIUV-Lutzomyia), at different time points
following infection at an MOI of 1 in C7/10 cells. (B) Growth curve of NEGV with MOIs of 1 and 5 in
C7/10 cells. All points represent means from n=3, * standard deviations (SD). Letters indicate
significant differences (P < 0.0001).

differences in VEEV-TC83 titers when NEGV inoculation preceded VEEV-TC83 inocula-
tion by 0, 2, or 6 h. Coinfection with PIUV-Culex or PIUV-Lutzomyia also significantly
reduced replication of VEEV-TC83 across all time points (Fig. 2B to D). A similar reduc-
tion of VEEV-TC83 was observed during all negevirus coinfections, as VEEV-TC83 was
reduced 4.6 to 7.2 log,, PFU/ml at 48 h.

Coinfections with CHIKV and NEGV also resulted in significantly lower titers of
CHIKV at all time points but only reduced the titer of CHIKV by 0.65 to 0.93 log,, PFU/
ml after 48 h (Fig. 3A). Varying the MOI of NEGV and timing of CHIKV inoculation only
produced differing titers of CHIKV at the 12-h time point. However, titers of CHIKV dur-
ing coinfection with different negeviruses varied greatly (Fig. 3B and C), with the larg-
est variance of CHIKV titers, reductions of 0.65 log,,, 2.4 log,,, and 5.3 log,, PFU/mI,
observed when inoculated 6h postinoculation with NEGV, PIUV-Culex, and PIUV-
Lutzomyia, respectively (Fig. 3D).

NEGV and PIUV-Lutzomyia were also able to reduce replication of several other
alphavirus isolates by various amounts when infected simultaneously. Titers of VEEV-IC
were reduced by 2.8 to 3.0 log,, PFU/ml at 48 h postcoinfection (Fig. 4A). Three isolates
of MAYV, Guyane, BeAn343102, and BeAr505411, were reduced by 1.9 to 3.2 log,, PFU/
ml at 48 h postcoinfection (Fig. 4B). Outputs between MAYV coinfections were similar,
with significant differences at 48 h only seen for MAYV-Guyane coinfected with NEGV
and PIUV-Lutzomyia, respectively. ONNV titers were reduced by 2.4 to 3.2 log,, PFU/ml,
and SFV was reduced by 1.2 to 1.8 log,, PFU/ml after 48 h (Fig. 4C and D).

Replication of modified NEGV isolates. The sequence for GFP was successfully
cloned as both a fusion and cleaved protein at several sites along the NEGV infectious
clone (Table 1, Fig. 5A). Following electroporation, viable virus was rescued from iso-
lates with GFP inserted as a fusion and cleaved protein on the C terminus of ORF3 and
as a cleaved protein on the C terminus of ORF1.
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FIG 2 Growth curves of VEEV-TC83 in C7/10 cells during coinfections with wild-type negeviruses. (A) Growth curves of VEEV-TC83 when inoculated on cells
at 0, 2, and 6 h after NEGV infections. NEGV was inoculated at an MOI of 1 or 5. (B to D) Growth curves of VEEV-TC83 when inoculated on cells at 0 h after
negevirus infection (B), 2 h after negevirus infection (C), and 6 h after negevirus infection (D). Negeviruses were inoculated at an MOI of 1 (B to D). VEEV-
TC83 was inoculated at an MOI of 0.1 for all conditions. All points represent means from n=3, =SD. Letters indicate significant differences (P < 0.0001).

Further experiments used isolates with GFP added to ORF3 (NEGV GFP-fusion and
NEGV GFP) and also with GFP swapped with single-chain variable fragment (scFv)
CHK265, a partial sequence for an anti-CHIKV antibody (Fig. 5A). Mutated isolates were
rescued and had titers ranging from 9.6 to 10.4 log,, PFU/ml, with growth curves simi-
lar to those of wild-type NEGV (Fig. 5B). Cells infected with NEGV GFP-fusion demon-
strated brilliant, punctate fluorescence (Fig. 5C), while cells infected with NEGV GFP
(cleaved) demonstrated dull, diffuse fluorescence (Fig. 5D). The number of fluorescent
plaques and overall titer of NEGV isolates expressing GFP remained stable for 5 pas-

sages in C7/10 cells (Fig. 5E and F).
Superinfection exclusion of alphaviruses with modified NEGV. NEGV isolates

expressing GFP or scFv-CHK265 were used to infect cells for coinfection with VEEV-
TC83 or CHIKV. The results for coinfections with VEEV-TC83 were similar to the reduc-
tion in titer seen with wild-type viruses. At the 48-h time point, VEEV-TC83 was reduced
by 4.5 to 5.5 log,, PFU/ml when coinfected with NEGV isolates (Fig. 6A), 4.6 to 5.8 log;,
PFU/ml when infected 2 h after NEGV isolates (Fig. 6B), and 5.6 to 6.9 log,, PFU/mlI
when infected 6h after NEGV isolates (Fig. 6C). When infected simultaneously with
CHIKV, titers were reduced by 0.7 to 1.1 log,, PFU/ml during coinfections of NEGV
expressing GFP and by 2.9 to 3.8 log,, PFU/ml during coinfections of NEGV expressing
scFv-CHK265 at the 48-h time point (Fig. 7A). When inoculated 2 h after NEGV infection,
the titer of CHIKV after 48 h was reduced 0.7 to 0.9 log,, PFU/ml with NEGV expressing
GFP and 3.7 to 4.5 log,, PFU/ml with NEGV expressing scFv-CHK265 (Fig. 7B). Delaying
CHIKV infection 6 h after NEGV infection resulted in reductions of 1.2 to 1.9 log,, PFU/
ml and 5.2 to 5.7 log,, PFU/ml after 48 h of coinfection with NEGV expressing GFP and
scFv-CHK265, respectively (Fig. 7C).

DISCUSSION
The microbiome of arthropod vectors is known to influence host-pathogen interac-
tions (31-33). The precise mechanisms of pathogen inhibition are unknown, but there
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FIG 3 Growth curves of CHIKV in C7/10 cells during coinfections with wild-type negeviruses. (A) Growth curves of CHIKV when inoculated on cells at 0, 2,
and 6 h after NEGV infections. NEGV was inoculated at an MOI of 1 or 5. (B to D) Growth curves of CHIKV when inoculated on cells at 0h after negevirus
infection (B), 2h after negevirus infection (C), and 6h after negevirus infection (D). Negeviruses were inoculated at an MOI of 1 (B to D). CHIKV was
inoculated at an MOI of 0.1 for all conditions. All points represent means from n=3, =SD. Letters indicate significant differences (P < 0.0001).

is increasing evidence that interference from ISVs is one mechanism (5-7, 10).
Interactions between related viruses have led to the theory of superinfection exclusion,
in which an established infection interferes with or inhibits a secondary infection by a
closely related virus. For example, a CFAV mosquito isolate reduced the replication of
DENV and ZIKV during coinfections in mosquitoes and mosquito cells (5).

To investigate if superinfection exclusion occurred with other virus combinations,
pathogenic alphaviruses and negeviruses were used in coinfection experiments. Titers
of multiple VEEV isolates and MAYV isolates were consistently reduced during coinfec-
tion experiments with negeviruses. Reductions varied during CHIKV-negevirus coinfec-
tions. These results provide further evidence that superinfection exclusion of alphavi-
ruses is pathogen specific but differ from a previous report demonstrating no
reduction in titer of VEEV TC-83 and a significant reduction of wild-type VEEV-IC (strain
3908) after 48 h when coinfected with EILV, an alphavirus ISV (11). However, the poten-
tial for superinfection exclusion of pathogens is different for each ISV despite their
relatedness. These differences have been demonstrated among several insect-specific
flaviviruses. NHUV and PCV were capable of superinfection exclusion; CFAV gave vari-
ous results; and Culex flavivirus (CxFV) did not reduce titers of pathogenic arboviruses
(5-10, 15, 16, 34-37). In our experiments with negeviruses, PIUV isolates were more ca-
pable than NEGV at inhibiting important arboviruses.

While ISVs show promising results to block arbovirus replication in mosquito vec-
tors, their unknown mechanism of action may limit their use against a wide range of
pathogens, but paratransgenic ISVs could be used to provide antiviral molecules that
specifically interfere with pathogen transmission (38). To this end, we used an infec-
tious clone of NEGV to deliver a fragment of an antibody known to neutralize CHIKV
(39). An scFv consists of the variable regions of the heavy and light chains of an anti-
body, joined by a soluble linker. These antibody fragments can possess the neutralizing
qualities of their full-size versions in only ~27 kDa. Coinfections with scFv-expressing
NEGYV isolates greatly reduced titers of CHIKV, whereas coinfections with control NEGV

July 2021 Volume 95 Issue 14 e00433-21

jviasm.org 5


https://jvi.asm.org

Patterson et al. Journal of Virology

-
o
1
w
-
o
1
Q

a == MAYV-Guyane
o 8+ a aJ 8+ === =@~ NEGV + MAYV-Guyane
§ a = VEEV-IC E =& PIUV-Lutzomyia + MAYV-Guyane
S  6- / g e b b - MAYV-BeAn343102
s -®- NEGV+VEEV-IC £ c <®- NEGV + MAYV-BeAn343102
S 4 P —— ) S 4 c <A+ PIUV-Lutzomyia + MAYV-BeAn343102
§ b b == PIUV-Lutzomyia + VEEV-IC § .¢ MAYV-BeAr505411
24 = 2d +® NEGV + MAYV-BeAr505411
+& PIUV-Lutzomyia + MAYV-BeAr505411
c L) L] c ] L]
24 48 24 48
Hours post infection Hours post infection

(@)
O

a/
I 84 5 8-
£ . ONNV 5 /)
<=
Sl 2 — 2 . o -
& -®- NEGV + ONNV & b -®- NEGV +SFV
2 4 d 2 4
B =& PIUV-Lutzomyia + ONNV 5 =& PIUV-Lutzomyia + SFV
E 2 b b (=R
c L ] ] c |
24 48 24 48
Hours post infection Hours post infection

FIG 4 Growth curves of VEEV-IC, MAYV isolates, ONNV, and SFV in C7/10 cells during coinfections with wild-type negeviruses. (A) Growth curves of VEEV-IC
when inoculated on cells at 0h after negevirus infections. (B) Growth curves of MAYV-Guyane, MAYV-BeAn343102, and MAYV-BeAr505411 when inoculated
on cells at 0h after negevirus infection. (C) Growth curves of ONNV when inoculated on cells at 0h after negevirus infection. (D) Growth curves of SFV
when inoculated on cells at 0 h after negevirus infection. Negeviruses were inoculated at an MOI of 1 for all conditions. Alphaviruses were inoculated at an
MOI of 0.1 for all conditions. All points represent means from n=3, =SD. Letters indicate significant differences (P < 0.0001).

isolates expressing GFP or wild-type NEGV only modestly reduced CHIKV titers. The use
of parastransgenic NEGV expressing scFvs demonstrates a novel approach to disrupt
pathogen infection in mosquitoes. This method adapts two existing techniques for
pathogen control: Wolbachia-infected mosquitoes and the CRISPR-Cas-aided integra-
tion of scFv sequences into the mosquito genome. Wolbachia is a ubiquitous species
of bacteria found in many insects that has been shown to block replication of some vi-
ral pathogens in cell cultures and mosquitoes. The use of Wolbachia-infected vectors
has been widely adapted to curb mosquito-borne viral diseases, propelled by its natu-
ral ability to colonize mosquitoes (40). Negeviruses also possess this attribute, having
been discovered in numerous mosquito species on 6 continents, along with sandflies
and other diverse insect species (20-23, 25). Insertion of gene-editing scFv sequences
into mosquito genomes has also been used to prevent Plasmodium and DENV infection
(41, 42). By using CRISPR-Cas9 to insert an scFv targeting Plasmodium, infection was
blocked in Anopheles mosquitoes, and gene drive ensured the production of the scFv

TABLE 1 Rescue and passage of NEGV infectious clones with GFP inserted at different sites of
the genome“

Insertion site GFP expression PO GFP expression P1 CPE
ORF1-2A-GFP + + +
GFP-ORF2 + - -
ORF2-GFP + - -
ORF2-2A-GFP + - -
GFP-ORF3 + — _
ORF3-GFP + + +
ORF3-2A-GFP + + +

aTranscribed RNA was electroporated for passage 0 (P0) stock and supernatant was collected to generate P1
stock. CPE, cytopathic effect; +, presence; —, absence.
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in the offspring. In this study, we used an scFv expression strategy by cloning an anti-
CHIKV scFv into the NEGV genome. Using NEGV as a vehicle for paratransgenesis is ad-
vantageous, because an isolate can infect multiple host species, and it is suspected to
be vertically transmitted in mosquitoes and, in theory, could become established in
multiple generations of the infected host species (17, 22, 43).

Modifications to certain parts of the NEGV genome were tolerated as both cleaved
and fusion proteins. Expression of extraneous proteins in viruses is common with 2A
sequences to produce separate proteins or under a separate subgenomic promoter
(44, 45). However, extraneous proteins expressed as a fusion with a structural virus pro-
tein is uncommon. ORF3 is ~25 kDa and is suspected to be the membrane protein, the
dominant structural protein, and ORF2 is ~40 kDa and is the putative glycoprotein pre-
dicted to form a bud projecting from one end of the virion (26). The viability of the
NEGV isolates with GFP- or scFv-fusion at ORF3 isolates was surprising, because these
inserts double the size of the membrane protein, which must interact with itself and
ultimately support the projection of the glycoprotein. The modifications to ORF2
resulting in nonviable virus are not surprising, as the glycoprotein is suggested to be
important for cell attachment and entry (26). GFP preceded by a 2A sequence was also
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FIG 6 Growth curves of VEEV-TC83 during coinfections with paratransgenic NEGV. Growth curves of VEEV-TC83
when inoculated on cells at 0h after NEGV infection (A), 2h after NEGV infection (B), and 6h after NEGV
infection (C). All NEGV isolates were inoculated at an MOI of 1. VEEV-TC83 was inoculated at an MOI of 0.1 for
all conditions. All points represent means from n=3, =SD. Letters indicate significant differences (P < 0.0001).

successfully cloned onto the C terminus of ORF1. As 2A allows for separation of the
two proteins, this insertion only added 17 residues to an ~268-kDa protein. However,

ORF1 will likely be expressed at lower levels than ORF3.

By using NEGV to express anti-

CHIKV scFvs, the cleaved and fused inserts may provide distinct advantages. Cleaved
scFvs are free to be transported around the cell, accessing many different locations
where they may encounter CHIKV proteins. In contrast, fused proteins are bound to
the membrane protein of NEGV and are limited to compartments of the cell where
NEGV proteins are expressed and virions are assembled. In theory, increasing the con-
centration of the scFvs in specific areas of the cell should inhibit CHIKV virion assembly
and egress. By using both cleaved and fused NEGV isolates, the scFv sequence can
also be easily replaced to target a new pathogen, adding to the versatility of this

technique.
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FIG 7 Growth curves of CHIKV during coinfections with paratransgenic NEGV. Growth curves of
CHIKV when inoculated on cells at 0 h after NEGV infection (A), 2 h after NEGV infection (B), and 6 h
after NEGV infection (C). All NEGV isolates were inoculated at an MOI of 1. CHIKV was inoculated at
an MOI of 0.1 for all conditions. All points represent means from n=3, *=SD. Letters indicate
significant differences (P < 0.0001).

The current experiments demonstrate the ability of some negeviruses, both wild-
type and paratransgenic isolates, to inhibit replication in mosquito cells with coin-
fected arboviruses. The next question is whether genetically altered negeviruses will
survive and replicate in live mosquitoes and, if so, whether they will be vertically
transmitted or transovarially transmitted in the insects. This will be our next area of
investigation. If successful, then the use of paratransgenic negeviruses could be
another novel method to alter the vector competence of mosquitoes for selected
arboviruses.

MATERIALS AND METHODS

Cell culture and viruses. Aedes albopictus (C7/10) cells (46) were obtained from the World
Reference Center for Emerging Viruses and Arboviruses (WRCEVA). African green monkey kidney (Vero
E6) cells were obtained from the American Type Culture Collection (ATCC). C7/10 cells were maintained
in Dulbecco’s minimal essential medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1%
minimal essential medium nonessential amino acids, 1% tryptose phosphate broth, and 0.05mg/ml

July 2021 Volume 95 Issue 14 e00433-21

Journal of Virology

jviasm.org 9


https://jvi.asm.org

Patterson et al.

gentamicin in a 30°C incubator with 5% CO.. Vero cells were maintained in DMEM supplemented with
10% FBS and 0.05 mg/ml gentamicin in a 37°C incubator with 5% CO,.

NEGV was rescued in C7/10 cells from an infectious clone, as previously described, without fur-
ther passage (47). The sequence was derived from NEGV strain M30957, isolated from a pool of
Culex coronator mosquitoes collected in Harris County, TX, in 2008 (17). Piura virus (PIUV) strain EVG
7-47 (PIUV-Culex) was isolated from a pool of Culex nigripalpus mosquitoes from Everglades
National Park, FL, in 2013 (22). PIUV EVG 7-47 was passaged four times in C6/36 cells and obtained
from the WRCEVA. PIUV strain CO R 10 (PIUV-Lutzomyia) was isolated from a pool of Lutzomyia
evansi sandflies caught in Ovejas, Sucre, Colombia, in 2013 (22). The isolate PIUV CO R 10 was pas-
saged twice in C6/36 cells and also obtained from the WRCEVA. CHIKV isolate 181/25 (48) was res-
cued in Vero cells from an infectious clone, as previously described (49). Rescued CHIKV 181/25 was
subsequently passaged once in C7/10 cells and once in Vero cells. VEEV vaccine strain TC-83 (50)
was rescued in baby hamster kidney (BHK) cells from an infectious clone without further passage.
VEEV isolate P676 (VEEV-IC) and SFV isolate A774/C2/A were attained from Public Health England
and passaged once in Vero cells. ONNV isolate UgMP30 and MAYV isolates Guyane, BeAn344102,
and BeAr505411 were attained from BEI Resources and passaged once in Vero cells.

Cloning NEGV for exogenous gene expression. The NEGV infectious clone was used as the back-
bone to express exogenous genes. Green fluorescent protein (GFP; 717 bp) was inserted along several
sites of the NEGV genome, and the scFv of anti-CHIKV neutralizing antibody CHK265 (771 bp, including
linkers) (39) was inserted on the C terminus of ORF3 as either a fusion protein or with a 2A sequence
(EGRGSLLTCGDVEENPGP) (Fig. 1A). The cloned scFv CHK265 sequence contained an N-terminal linker
(LAAQPAMA) for articulation from the viral ORF3 protein and a domain linker [(G,S),] between the vari-
able heavy (V,,) and variable light (V,) domains (Integrative DNA Technologies) (Fig. 1B). Cloning was per-
formed using an In-Fusion HD cloning kit (TaKaRa Bio) per the manufacturer’s protocol. Correct insertion
was confirmed by sequencing. Infectious clones of NEGV containing exogenous genes were rescued in
C7/10 cells as previously described and without further passage (47). Passaging of NEGV isolates
expressing GFP was performed by inoculating C7/10 cells at an MOI of 1 and collecting medium super-
natant at 48 h postinfection.

Virus growth curves. Negevirus and alphavirus growth curves were done in C7/10 cells maintained
at 30°C and 5% CO,. Negeviruses were inoculated at an MOI of 1 or 5. Alphaviruses were inoculated at
an MOI of 0.1. Virus was added to the cells, which were incubated at 30°C for 1 h. Inoculum was
removed, cells were washed with phosphate-buffered saline (PBS), and fresh medium was added to the
wells. Cells were incubated in a 30°C incubator with 5% CO,. Samples were collected in triplicate at 2, 6,
12, 24, and 48 h postinfection (hpi). Samples were clarified by centrifugation at 1,962 x g for 5 min.
Supernatant was removed and stored at —80°C until used for plaque assays. Negevirus titers were deter-
mined by plaque assay in C7/10 cells as previously described (47). Alphavirus titers were determined by
standard plaque assay in Vero cells.

Negevirus-alphavirus coinfections. C7/10 cells were inoculated with negevirus isolates at an MOI
of 1 or 5 to establish infection in a high proportion of cells. The cells were also inoculated with an alpha-
virus at an MOI of 0.1 at 0, 2, or 6 h after negevirus infection. Medium was removed after 1h of simulta-
neous incubation with negevirus and alphavirus inocula. Cells were then washed with PBS, and fresh
medium was added to the wells. Cells were held in a 30°C incubator with 5% CO,. Samples were col-
lected in triplicate at 12, 24, and 48 h after alphavirus infection. Samples were clarified by centrifugation
at 1,962 x g for 5 min. Supernatant was removed and stored at —80°C until used for plaque assays.
Alphavirus titers were determined by standard plaque assay in Vero cells.

Statistical analysis. Differences in virus growth curves were determined by two-way analysis of var-
iance, followed by Tukey’s test. Comparison of NEGV growth curves with different MOIls was determined
by multiple t tests, followed by the Holm-Sidak method. All statistical tests were performed using
GraphPad Prism 6.0.
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